skip to main content


Search for: All records

Creators/Authors contains: "Nasiri, Alireza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    The development of an efficient and powerful machine learning (ML) model for materials property prediction (MPP) remains an important challenge in materials science. While various techniques have been proposed to extract physicochemical features in MPP, graph neural networks (GNN) have also shown very strong capability in capturing effective features for high-performance MPP. Nevertheless, current GNN models do not effectively differentiate the contributions from different atoms. In this paper we develop a novel graph neural network model called GATGNN for predicting properties of inorganic materials. GATGNN is characterized by its composition of augmented graph-attention layers (AGAT) and a global attention layer. The application of AGAT layers and global attention layers respectively learn the local relationship among neighboring atoms and overall contribution of the atoms to the material's property; together making our framework achieve considerably better prediction performance on various tested properties. Through extensive experiments, we show that our method is able to outperform existing state-of-the-art GNN models while it can also provide a measurable insight into the correlation between the atoms and their material property. Our code can found on – https://github.com/superlouis/GATGNN. 
    more » « less
  3. Abstract

    High‐throughput screening has become one of the major strategies for the discovery of novel functional materials. However, its effectiveness is severely limited by the lack of sufficient and diverse materials in current materials repositories such as the open quantum materials database (OQMD). Recent progress in deep learning have enabled generative strategies that learn implicit chemical rules for creating hypothetical materials with new compositions and structures. However, current materials generative models have difficulty in generating structurally diverse, chemically valid, and stable materials. Here we propose CubicGAN, a generative adversarial network (GAN) based deep neural network model for large scale generative design of novel cubic materials. When trained on 375 749 ternary materials from the OQMD database, the authors show that the model is able to not only rediscover most of the currently known cubic materials but also generate hypothetical materials of new structure prototypes. A total of 506 such materials have been verified by phonon dispersion calculation. Considering the importance of cubic materials in wide applications such as solar panels, the GAN model provides a promising approach to significantly expand existing materials repositories, enabling the discovery of new functional materials via screening. The new crystal structures discovered are freely accessible atwww.carolinamatdb.org.

     
    more » « less
  4. Abstract

    Accurate prediction of peptide binding affinity to the major histocompatibility complex (MHC) proteins has the potential to design better therapeutic vaccines. Previous work has shown that pan‐specific prediction algorithms can achieve better prediction performance than other approaches. However, most of the top algorithms are neural networks based black box models. Here, we propose DeepAttentionPan, an improved pan‐specific model, based on convolutional neural networks and attention mechanisms for more flexible, stable and interpretable MHC‐I binding prediction. With the attention mechanism, our ensemble model consisting of 20 trained networks achieves high and more stabilized prediction performance. Extensive tests on IEDB's weekly benchmark dataset show that our method achieves state‐of‐the‐art prediction performance on 21 test allele datasets. Analysis of the peptide positional attention weights learned by our model demonstrates its capability to capture critical binding positions of the peptides, which leads to mechanistic understanding of MHC‐peptide binding with high alignment with experimentally verified results. Furthermore, we show that with transfer learning, our pan model can be fine‐tuned for alleles with few samples to achieve additional performance improvement. DeepAttentionPan is freely available as an open‐source software athttps://github.com/jjin49/DeepAttentionPan.

     
    more » « less